
I. A&. Maths Mechs Vol. 56, No. 5, pp. 737-746,1992 0021-8928/92 $24.00+ .OO 
Printed in Great Britain. 0 1993 Pergamon Press Ltd 
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Necessary conditions are given for an extremum (in the form of a Pontryagin maximum principle) for 

almost-periodic (a.p.) optimal control problems, and these conditions are automatically satisfied by 

convexified problems. The importance of studying the optimal control problem for a.p. motions of 

dynamical systems was noted in [l-3]. Such problems appear in many applications, (see for example [4-7]), 

and also [8] which is devoted to the problem of a.p. optimization. 

1. SUPPOSE that R" is an n-dimensional Euclidean space, (x 1 is the norm of the element x E R", 
Hom(R”) is the space of linear operators A : R"+ R" with norm IA 15 SUP,+~ [Ax ( / 1.x 1, and 
comp(R”) is the collection of compact subsets of R". We shall denote by S(R, Y) [here and below Y 
is any set UEcomp(R”), or the space R" or Hom(R”)] the collection of functions that are a.p. in 
the sense of Stepanov (and unless otherwise specified, we shall simply refer to “a.p. functions”). We 
recall [9, p. 2001 that a functionfELp(R, Y) belongs to S(R, Y) if for any E>O the set 

I+ 1 

Es U-, f) k I7 E R : :p~ ,I I f(s + 7) - f(s)1 ds < E 1 

of its almost-e periods (E-a.p.s) is relatively dense. To each functionfE S(R, Y) there corresponds a 
Fourier series which can be conveniently represented in compiex form 

f(t)- z fke jht, fh&M{f(t)e-ih’] & lim _!. ff(t)e-‘“‘dr 
A T-- T a 

with the set of Fourier indices A(f) k {A E R: IfA 1 >O} is not more than denumerable. 
Below mod(A) is the modulus of the set AC R, i.e. the smallest addition group containing A and, 

if fE S(R, Y), then mod(f) k mod [A(f)] is the modulus of the function f. 
The set Q CS(R, Y) is called equally a.p. if for any E>O the set fl,,,&(f, e) is relatively dense. 
Suppose further that B(R, Y) is a collection of a.p. functions in the sense of Bor, i.e. [9, p. 201 

those functions f~ C(R, Y) such that for any E>O the set 

EE(f,e)& IrER: sup If(t+~)--f(t)l< E] 
tER 

is relatively dense; B(R x K x U, Y) where K x UEcomp(R” X R") is the collection of functions 
fE C(R x K x U, Y) which are a.p. with respect to t in the sense of Bor uniformly with respect to 
(x, u) E K x U. This means [lo, p. 171 that for any l >O the set 

n EE (0 - ,x, ~1, e) 
(x,u)EK x CJ 

is relatively dense. 
Suppose further that V is an open set in R", and that the function f: R x V x U-+ R", which is 

differentiable with respect to x, satisfies the following conditions: (1) fE C(R x VX U, R”), 
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738 A.G. IVANOV 

f:E C[R x VX U, Hom(R”)], and (2) fEB(RxKxU,R"),f:EB[RXKX U,Hom(R”)] for 
every compact KC V. We shall also assume that the function fc: R X V X lJ+ R also satisfies 
conditions 1 and 2 (with the corresponding change in dimensions). 

Suppose that AcR, then &(A) is the set of functions u(a) ES(R, II) such that 
Mod(u)cMod(A), and if $EC(R, R”) G C(R”), then orb($) is the closure (in R”) of the set 
orb($)& {4(t), PER}. 

Definition 1. The problem 

J&(.),u(.))A Mlf0(t,x(t),u(t))l -+inf 

where x(a) is a Bor a.p. solution of the system 

x ’ =f(r,x,u(tN, u(.JELh(A) 

(1.1) 

(1.2) 

and orb(x) C V, is called an a.p. optimal control problem, and D,(A) is the set of admissible 
(ordinary) controls (as regards the well-posedness of the problem see Sec. 2, Corollary 2.1). 

We will give some necessary extremality conditions for the optimal control of a convexified 
(relative to the original) a.p. optimal control problem. On the importance of the enlargement 
(convexification) procedure applied to optimal control problems see, for example, (11-131, and in 
the theory of games [14, 151. With this aim, in the following section we shall introduce the space of 
APM measure-valued a.p. mappings, while to conclude this section we recall the concept of 
exponential dichotomy. 

Suppose FE Lp[R, Hom(R”)] is also integrally bounded, i.e. 

tt1 

sup J IF(s)Id 
tER r 

The system 

X' =F(t)x, xER” (1.3) 

is exponentially dichotomous [16, 171 if there exist mutually complementary projections Pi, 
P2 E Horn (R”) and constants yl, y2, (T] , a2 > 0 such that 

I@(t)P1+P-l(s)l < riexp(-oi(t - s)), -m< s< t<m 

I a(r) P2@-’ (s)l < 72exp(-az(s - t)), - m < r G s < - 
(1.4) 

where @( .) is the fundamental matrix of system (1.3). In this case the function 
(r, s) H G (r, s) E Horn (R”), r, s E R defined by the equalities 

where xp ( a) is the characteristic function of the set Q CR, is called the (main) Greens function of 
system (1.3). 

If FES[R, Hom(R”)] and system (1.3) is exponentially dichotomous, then [17, 181 for any 
function bES(R, R”) the system X’ = F(r)x+ b(r) has a unique solution x(o) bounded on the 
entire numerical axis, computed from the formula 

x(r)=JG(r,s)b(s)ds, PER 
R 

and x( a) EB(R, R”). 

2. Suppose frm (U) is the linear space of Radon measures on R” whose basis is contained in U, 
and rpm (U) is the subset of frm (U) consisting of probabilistic Radon measures. We will denote by 
Ne N[R, frm(u)] the collection of (Lebesgue) measurable mappings CL: R+frm(U) such that 
I( p/ 6 ess suptER ) p(r) ) (17) < 00. [Here / p(t) I (U) is the variation of the measure p(t) E frm (U) and 
NliN(R, rpm(U)).] Suppose further that IB~;B(RXU, R”) [IB,+~B(RxU,R)] is the 
collection of functions 40: R x U-+ R” such that the map r-cp(r, u), uE U is measurable, 
cp(r, .)E C(U, R”) for almost all fE R and there exists a function (cI,( *)E L,(r, R) such that for 
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almost all TV R the inequality maxVEu/ qp(t, u) 1 d (G;p (t). It is easy to show that 1 B is a linear space 
and 

is the norm of cpE (B. Furthermore, with minor changes to the proof of the Danford-Pettis theorem 
[ll, p. 2991 one can show that N= IBf and the map ]]*]]w: N-+ R defined for p E N by the equality 

where {PI, tpz, . . .} is the denumerable and everywhere dense set of functions in ]B and is a (weak) 
norm in N. The space (N, ]I. flw) is separable, the set Nr C (N, ]] * ]I,+,) is a convex compact set and if 
~~,~EN1,i=1,2,...,thenlimj~,ll1~i-1*I(W=Oifandonlyif 

lim J (p(f) - pi(t), cp(t, u)> dt = 0 
j-t- R 

for any function cp E ]B. 

~e~~~~~o~ 2.1. [19, p. 51. The map FEN is called a.p. if for any function gE C(U, R”) the map 
t+-+{@(f), g(u)) belongs to S(R, R”). 

The collection of all a.p. maps PEN (plE Ni) is denoted by APM (APMi). We denote by 
APMV) the collection of those p EAPMi such that h(t) = S,(,) for almost all E R and some 
measurable function u(a): U+ R, where Qrj is the Dirac measure concentrated at the point 
u(r)E U. One can show that APM$l)sS(R, U) and, consequently, each u(-)ES(R, U) can be 
considered as an element of the space APMi , identifying it with Q., . 

If pEAPM, then by definition the map t-+(r), g(u)) belongs to S(R, R”) for every function 
gEC(U,R”). Hence for every AER there exist means A,[g,A]~M{(p((t), g(u))cosht}, 

BcL[g, h]~M{(p(r), g(u))sinht} with 

<~(k04)--A,[g,0] i-2 Z A,[g, X]cOsXr+Bp[g, h]sinhr 
a+0 

(2. I) 

As has already been noted, the set A&, g) + {A E R: IA, [g, A] / + /BP [g, A] 1 >0} of Fourier 
indices for a.p. maps r-(p(t), g(u)) is not greater than denumerable, and in (2.1) it is to be 
understood that A, [g, A] = BN [g, A] = 0 if A E A(,u, g). In f19] it was shown that for every A E R one 
can find measures a,+, /3,, E frm (U) such that A, [g, A] = (a*, g(u)), B, [g, A] = (&, g(u)) for all 
gEC(U, R”). Suppose now that {gi, g2, . . .} is a denumerable set that is everywhere dense in 
C( U, R”) and consists of continuous functions and A(p) + {A E R: / crA j (U) + I& 1 (U) > 0} . It turns 
out [19, p. 71 that A(p) = U,Zl A(,+ gj) (hence A(p) is no larger than a denumerable set). A(p) is 
called the set of Fourier indices of the map p E APM, and the sign-valued series 

(Y@ + 2 Ic tllhcoshr -I-p,sinXr - 
h#O 

is its Fourier series. Here Mod @CL) * Mod [A(p)] is the modulus of the map p E APM. 

Theorem 2.1.t If rpE B(R x U, R), then for any PEAPM the map r-+(r), cp(t, u)) belongs to 
S(R, R) and its modulus is contained in Mod [A(p) U A(p)]. 

TIVANOV A. G., Sign-valued almost-periodic functions. Unpublished paper, Izhevsk, 1991. Deposited in VINITI 
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Corollary 2.1. If the function g: R x VX U -j R” satisfies conditions (1) and (2), and p E APM, 
then for every XEV the map f-(&t), g(t, x, u)) belongs to S(R, R”) and, if the function 

x(*)ER(R, V) is such that orb(x) C V, then the maps t~(p(f), g(t, x(t), u)), t*&(t), &(t, x(t), 
u)) belong to the spaces S(R, R”) and S[R, Hom(R”)] respectively. 

Suppose further that 

&(A) G 1 p E APM, : Mocl&)L Mod(A)] (2.2) 

Definition 2.2. The problem 

J(x(.),~(.))+MI(Cc(f),fo(t,x(t),u))~ +inf (2.3) 

where x( *) is Bor a.p. solution of the a.p. system 

x =W),f(W))~; f(t,x,u)r-c(t)(du), cc(.)EDz(A) (2.4) 

where orb(x) C V, is called a convexified problem of optimal control of a.p. motions in which any 
such pair [x(e), p( .)I is called an admissible controlled process, and Dz(A) is the set of admissible 
controls; H(t, x, II, p)*--_P(v, f(t, x, u)>+(v, fa(t, x, u)), PER”*, and ~Erpm(U) is the 
Pontryagin function for problem (2.3), (2.4). 

Theorem 2.2. Suppose that [x0(. ), $‘(u )] is a solution of problem (2.3), (2.4), and that the a.p. 
system of equations 

Y’ = (/J’@), C (t. x”(r), u),Y. Y E R” (2.5) 

is exponentially dichotomous. Then for a p(a) E B(R, R”*) which is a solution of the system of 
equations 

P = - ~(lr~(W;(~,x”(~), ~1) + (~“o(f),fbx(~,x~W, UP, PER”’ (2.6) 

the Pontryagin maximum principle 

is satisfied. 

Vc;~cAJ Ml R(t,x”(t), v(r), p(t))1 =M1 ~(f,x“W,cc”(~), p(t))1 (2.7) 
2 

One can prove the following theorem (see Theorem 4.2 and Remark 1.1 in [20]). 

Theorem 2.3. Equality (2.7) is satisfied if and only if for almost all tE R 

max 
vErpm(LI) 

R(t, x”(t), v* p W) = R(t, x”(t), p”(t), p(t)) 

To prove Theorem 2.2 we need the concept of a needle-shaped variation of p”” E D2 (A), and also 
the theorem given below. But first we recall [19] that the set QCAPM is called equally a.p. if for 
any function gE C(U, R”) the set {(p(e), g(u)), p( .)E Q} CS(R, R”) is equally a.p. 

Theorem 2.4.7 Suppose p is a limit of an open set A of the linear normed space (L, 1). [IL) and we 
are given a map CK-+~(. , a) from A into APMi. Suppose further that the function f: 
RxVxU+R” satisfies conditions 1 and 2, that the pair [x (. , p), p(. , P)] [where p(. , p) E APMi ) 
is such that x(. , /?) is a Bor a.p. solution of system (2.4) with p(t) = ~(t, p) and orb [x( *, p)] C V 
and, furthermore, that the a.p. system 

Ye = (~c(t. P), f:. (f,x(t, P), u))Y, Y E R” 

is exponentially dichotomous. Then, if the set {p(. ,a), (YEA} is equally a.p. and ]]p(. , 

t IVANOV A. G., Continuous dependence of an almost-periodic solution of a system of differential equations on a 

functional parameter-I. Unpublished paper. Deposited in VINITI 30.08.91, No. 3610-V91. 
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a) - p( e, p) I(,,,-,0 as /Ia - P(J~-J 0, then one can find a y>O such that for all cr EA for which 
IIa - p/IL < y the system X’ = (~(f, a), f(l, X, u)) has a Bor a.p. solution x( *, a) such that 
orb[x( -, cz)] C V and, moreover, Ilx( e, (Y) -x(. , P)((~(~“)-+O as I/~-&,+0. 

3. Choose an a > 0 such that 27~1~ E Mod (A) and suppose that 6E [0, a), a E A * (0, a - 19) and 
VE &(A) [see (2.2)]. Throughout the following [x”( -), $‘(*)I is a solution of problem (2.3), (2.4). 

Definition 3.1. The map t~p(t, (Y), SEA, defined by 

(3.1) 

is called a needle-like variation of p”( *) E&(A). 
The following theorem follows directly from the definition. 

Theorem 3.1. The family of maps {p( - , a), a E A} defined by formulae (3.1) belongs to D2 (A), 
and is equally a.p. and II&s , cy) - $‘( .)llW+ 0 for (Y J 0. 

Corollary 3.1. If system (2.5) is exponentially dichotomous, then for all sufficiently small CXEA 
system (2.4) has for p(t) = ~(f, a) a Bor a.p. solution x ( * , a) such that orb [x( *, a)] C V and 

lim llX”(.)-x(.,~)llC(R”)=O 
C2JO 

(3.2) 

Throughout the following, assuming F(t) = (p’(t), fL(t, x”(t), u)) for system (2.5), we will retain 
the notation used in the definition of exponential dichotomy of system (1.3). Furthermore, the set 
KEcomp(R”) is such that orb CKC V. By Corollary 3.1 we can find an interval Al CA such 
thatforallcwEAI,orb[~(.,a)]CK,where~(.,(Y~~’(.)-X(.,a). 

Lemma 3.1. There exists an interval AoCA such that the set {a-‘Ax( *, a), aEAo} C B(R, R") is 
uniformly bounded. 

Proof. In the paper cited in the first footnote it is shown that one can find an interval A2C,4 such that for a]] 
cz E A2 the function AX (. , a) E B (R, K) satisfies the equation 

z=I GU, s)[h,(s,z)+g(s,zN ds (3.3) 
R 

h,(t, i) A <&Lo(t) - M(t. cl), f(t. X”(t) - Z, U)) 

gk Z) f W”(I), f(f, X0(f), u) - f(r, X0(f) - z, u), - (p”(t), j-i (t. x”(t), II)) z 

BecausefiEB[Rx KX U, Hom(R”)J, then (see [lo]) one can find an (Y~>O such that 

If;(CX,,u)-f;,(f,X,,U)I< + (2 + a)-] 
foralI(t,xj,u)ERxKxCJ,j=1,2,if) x1 -x21<ao. Because for aEA2 [see (3.3)] 

Axk a) 1 
___ = - / G(t,S)h~(S,Ax(s,(~))ds+ 

o! "R 

1 
Ax(s,a) 

+I G(t,s) (/.i’(s),~ (f‘;.(s,x’(s)- OAx(s,cu), u)- f.;.(s4xo(s), U))de) ~ ds 
R 0 (Y 

(3.4) 

(3.5) 
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then from (3.1), the definitions of the functions h,(t, z) and (3.4) for all cvEAof (0, 1~“) CIA2 we obtain the 
proof of 

c r,, 
Yi -p+ Y? 

I- qJ(-o,a) 1 - exp(-a+) 
(3.6) 

I’,, ~~p~I.~(t,X,U)I,tf,-Y,U)F=,RXI:X f..l] (3.7) 

Lemma 3.2. The following limit equality holds as lim, 1 {I) a E A. 

1 im 
Ad. t a) - a ~c;(.,S)jlf”(S)-~(S,Oi),ffs,Xo(S),U))dsilC(R”)”O (3.8) 

al-0 o 

The proof of Lemma 3.2 follows directly from the incIusions f E B(R x K x U, R”), 
fkEB[R X KX U, Horn(R equality (3.5) and inequality (3.6), and so we omit it. 

Throughout the following (see 1.4) 

2, ]O,l,...I 

x,(t,S)~~(t+7)cp-“(Si7), Pj(t,S)“Q,(f}Pjcp-‘(S),_j= 192 

Af(t, V) k (I - p’(t), f(t, x”(t), u),, n(t) + (II@), fb, tf, x”(I), u), (3.9) 

1‘, +sup Ilfb,(t,x,u)l,(t,jc,u)ERXKX Ul, F~max(I’a,rr) 

We note that n(s)ES(R, R) and because ]I#]] = 1, f’>f’raeess supfER] q(t)]. Furthermore, 
suppose that for s E [0, a] 

$1) (s)+(‘)ly)ii 
nz, k 

q(r)P1(t,tts’- ka- a)Af(t+s- ka- a,v)dt 
,?1U 

tf,Tik (s) G 
(m+1)n 

,;‘, q(t) Pz(r, t f s + ka) Af(t + s + ka, v)dt 

(3.10) 

(3.11) 

Lemma 3.3. For every k E 2, the sets {p&k, mEZ+},j= 1,2arecontainedinC([O,a],R”)and 
are equicontinuous. 

Proof. Suppose w(h) (h > 0) is equal to 

sup {lX,.(O, S,)- X,(0, s2)l, P.Sj)ER x fkn, (k+ I)al, i= 1, 2, Is, - S?I < hl 

Because Af( +, v) ES(R, R”), then [9, p. 2011 

(3.12) 

Now, using the fact that w(h)-+0 as h 5 0 and the easily obtained inequality [here see (3.7) and (3.9)] 

’ r;nlAf(f+h,u)- A~(r,u)ldf+2r,aT'w(h) G ay,r sup - 
rER” r 

we find that the set {.c$$, mE.‘Z+} CC([O. a], I?“) is also equicontinuous. We can similarly prove the 
corresponding assertion for the set {&J;, rtz E Z+ >. 

Suppose further that @,,,, (8) and $$L., (9) are respectively equal to 

+=i;)’ q (Q [t &_ P, (r, t + s>‘A,f(f + s, v)ds - 

- P,(t,t- ka-at+)Af(t- ka-at9,v) 
I 

dt 

(m+1)a 
L* W[ i ~Pz(t,t+s)Af(t+s,v)ds- Pz(t,ttkat8)Af(ttkat9,v)]dt 

k’ 
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where [see (3.1)] 

Lemma 3.4. For every k E 2, and 6E [0, a] 

lim ( sup I Fiji a (c+)l)=o, I= 1,2 
,240 mEZ+ 9 ' 

(3.13) 

(3.14) 

Proof. Changing the order of integration in each $&,(a)>, and using (3.10) and (3.11), we obtain the 
inequality 

, =(i) 
, i9+a 

k,m,a(wl ( y ; I I;!k(S) - qp)l ds, i= 192 

Then (3.14) follows from Lemma 3.3. 
Throughout the following 

L(t,9)& i (Pl(r,t- ka- a+o)Af(t- ka- a+$,‘)- 
k=O 

Using the “a.p. along the diagonal” property (see the paper mentioned in the second footnote) 
the maps (t, s) * Pj (t, s), j = 1,2 and the inclusion Af( + , v) E S(R, R”) one can show that the family 
of maps {L(. , 6), 6~ [0, u]} belongs to S(R, I?“) and is uniformly bounded and equally a.p. 
Furthermore, we have the following theorem. 

Theorem 3.2. For almost all 6E [0, a], a EAo 

( I 
(m+1)e 

lim TEPZ+ ;a q(r) 
a!+0 ( 

T - I5(t, 9) dr = 0 
1 I) 

Proof. Suppose ye max ( -yl , -y2), CT f max (aI , ~22). Because 

E,(I~)G~;~( ,sippz I ?~~,J6)1+ ;Eppz I “~)m,,(S)l)G ~?BI”~-~ e-“ka 
+ + 

then for a given E>O one can find a koa 1 such that for all (a, a) EAo X [0, a) 

(3.15) 

(3.16) 

Then, because for LYE A0 

(m+l)a 
sup I 1 q(t) T 

( 
- L(t,crq dtl <E,(6)+ 

mEZ+ mo ) 

tar I Ax(. , (~1 
- SG(.,s)(r.l”01- CI(S,(Y),f(S,XO(S),U))dS C(R,,) 

(3.15) follows from (3.16) znd (3.14: (3.18). 
I 

We put Afo(t, V) e((v(t) -p”(t),fo(t, x’(t), u)). By Corollary 2.1 Af(‘, v)ES(R, R). Hence (see 
the paper mentioned in the first footnote) for almost all 6E [0, a] there exists 

lim L Z Afo(O + ma, v) G .$(a) 
9-m qa 

and the map I~H((??) is measurable and bounded. Above and below the sums are taken from m = 0 
tom=q-1. 
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Lemma 3.5. We have the equality 

iim i lim 
I 

-!- C ( L ‘ia Ahfe(t + ma, u)dt - A.&(8 f ma, Y)) d8 = 0 
0400 4’-qa ty 9 

Proof. Because the function AfO( -, v)ES(R, R), it obeys a limiting equality similar to (3.12). Hence 

a’:?, qa 
i cc’ 9~Af~(t+ma,v)*t-Af,(iy+m~,v))ida< 

a I? 

< lim L ci(’ ~IAfO(t+4+ma,v~-AfO(8+ma,v)~dt)d~~ 
q,mqa 0 “0 

r+a 

r; o<~$~(r~“R i. I 1 Af,@+t,v)-- A.fc(s,v)/ds+O 
r 

when LY 4 0, as was required. 

Corollary 3.1. One can find a sequence {aj)jZl such that tyi .J 0 as i+ ~4 and for almost all 
6~ [0, a], for example for r?E E, we have the equality 

1 I9 +a/ 
lim ( lim - S -!- J Afo(t + ma, v) dr - Afo(t9 + ma, = 0 (3.17) 

j-+m q-m qa Qi 6 

4. We will give a proof of Theorem 2.2. Take any 9E Z il [0, a) ( see Corollary 3.1). By the definition of A”, 
for all aEAo the pair [x(., (Y), j.~(., a)] is an admissible controlled process of problem (2.3), (2.4). Because 
[x0( .), FO( .)I is a solution of this problem, then, putting w k a + 6 and using (3.1) and (3.13), we have 

o~cr-‘~J~xxf,~ccXr~~,a~~-J~x”~-f,~”~~~~= 

,’ lfi _!_ ~(mjl)a(~~(t,a~,f,(f.x(r,a~,u))- cr”(t),fe(t,xO(t),U)))dt= 
a q-+oo qa ma 

(9(tf,fo(t,~(t,cu),~)-f~(t,~~(t),u))dt+ 

+ t Tj- 
GI 

(w(t), f,ct. x(t, a), u)) - W’(t), f,, (t, x0(t). UPI dt * 

1 (m+i)a 

+ ; ma~~~r”(t),fO(t,x(t. a), u) - fo(t,x”(t), u))dt] = 

= lim L z: { 

(m+l)a 1 

_f fl*“(t), f f&t,x’(t)+ @Ax@, or), u)d@) 
Ax@, a) 
- dt+ 

q-+e qa ma 0 Q 

+ L _f 
(y T; 

<v(r), .foct, x (t, cd, u) “- fb (r% x”(r), u)) dt + !_ _f Af, (r, V) dt + 
a T,?j, 

x”(r)+ eaxk 4, u) do) 
Ax@, a) 

dti 
Q 

We now put cy = ai, where {cxj}jZi is the sequence from Corollary 3.1, by virtue of which, starting from some 
jO, all a/CA,. Passing to the limit as j-0 limit in the relation obtained above, using equalities (3.17), (3.15) 
and (3.12), the restrictions on fo, the inclusions c, uE D,(A) and inequality (3.6) and find that 

O<lim _A- 
q-r (m+ lfo 

2 (Af,,ffi + ma, v) + I q(t) L (t, 4) dt) 
q-rm w m=~ ma 

Integrating the latter inequality over -9 from 0 to a [see the definitions of q(t) and L(r, CT)], we obtain 
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M ((N - r”(t),f&, x”(t), u,)] +M 1 W’(O, fbx(t, x”(t), u))y(ol > 0 

v(r) =; C(t, 8) Af(i% V) d9 

(4.1) 

Because p( .) and y( .) are Bor a.p. solutions of system (2.6) and y’ = (p.“(t), fl[t, x0(r), u])y +Af(r, V) 
(y E R”), respectively, we have 

-& (P(r)yU)) =p(t) Af(L v)+ (fi”U), f;x(t, x”(t), U))Y(t) (4.2) 

Since IIPIIccR~*~, IIY IIc(R~) <~a, we have M{d/dt[p(t)y(t)]} = 0. Consequently [see (4.2)] M{(p.“(f), f&[t, 
x’(t), u])y (t)} = -M {~(t)Af(t, v)}, Hence [see (4.1) and the definition of the Pontryagin function] for all 
VE&(A), M{H[t, x”(t), p”(t),p(t)]} 2 M{H[t, x”(t), v(t),p(t)]}. which is equivalent to (2.7). Theorem 2.2 is 
proved. 

Remark 4.1. One can show that the exponential dichotomy condition on system (2.5) in Theorem 2.2 is 

important. 
In conclusion we will prove the following theorem. 

Theorem 4.1. Suppose [x0( .), p”( * )] is a solution of problem (2.3), (2.4) and $( *) E @(A&D1 (A) 
(recall that S(R, U)=APM{“). Th 

lW( * 1 - %,(.) II0 0 

en one can find [19] a sequence {Uj}jZlCDl(A) such that 
as j+ a~ and for any function cp E B (R x II, R”) 

Furthermore, it turns out (see the paper mentioned in the second footnote) that for all sufficiently 
large j the system 

X =f(t,x,Ui(f))~((6,~(,),f(r,x,U)) 

will have a Bor a.p. solution Xj( *) such that orb [xi( a)] C V and 

lim RX”(~)~Xj(~~IIC(R~~~O 
j - OD 

(4.4) 

Then from (4.3), (4.4) and the restrictions on the function fo we obtain limj_,J, [xi( * ), 

uj( e )] = J [x0( . j, p’( . )j , ai was required. 
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