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OPTIMAL CONTROL OF ALMOST-PERIODIC MOTIONST

A. G. IvaNov
Izhevsk
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Necessary conditions are given for an extremum (in the form of a Pontryagin maximum principle) for
almost-periodic (a.p.) optimal control problems, and these conditions are automatically satisfied by
convexified problems. The importance of studying the optimal control problem for a.p. motions of
dynamical systems was noted in [1-3]. Such problems appear in many applications, (see for example [4-7)),
and also [8] which is devoted to the problem of a.p. optimization.

1. SupposkE that R” is an n-dimensional Euclidean space, |x| is the norm of the element x ER",
Hom(R") is the space of linear operators A:R"”— R" with norm |A|=sup,.o|Ax|/|x|, and
comp (R") is the collection of compact subsets of R”. We shall denote by S(R, Y) [here and below Y
is any set UE€ comp (R"), or the space R" or Hom (R")] the collection of functions that are a.p. in
the sense of Stepanov (and unless otherwise specified, we shall simply refer to “a.p. functions”). We
recall [9, p. 200] that a function f€ L'°(R, Y) belongs to S(R, Y) if for any €>0 the set

+1

Es(fie)z {r€R:sup [ |f(s+7)~ f(s)lds< e}
tER 1

of its almost-e periods (e-a.p.s) is relatively dense. To each function f€ S(R, Y) there corresponds a
Fourier series which can be conveniently represented in compiex form

T
fO~Z fre™, freMifnye ™} = lim = [ fye™Mar
A T—-ow T o

with the set of Fourier indices A(f) = {A €R:|f,|>0} is not more than denumerable.

Below mod (A) is the modulus of the set ACR, i.e. the smallest addition group containing A and,
if fES(R, Y), then mod (f) = mod[A(f)] is the modulus of the function f.

The set Q CS(R, Y) is called equally a.p. if for any €>0 the set Nye g Es(f, €) is relatively dense.

Suppose further that B(R, Y) is a collection of a.p. functions in the sense of Bor, i.e. [9, p. 20]
those functions f€ C(R, Y) such that for any >0 the set

Eg(f,e)= {TER: sup Lf@+1)— F(DI< €}

is relatively dense; B(Rx Kx U, Y) where K x UEcomp(R" X R") is the collection of functions
fFEC(RXKXU, Y) which are a.p. with respect to ¢ in the sense of Bor uniformly with respect to
(x, u) € Kx U. This means [10, p. 17] that for any >0 the set

N EB(f('yxyu):e)
(x,u)eEXK XU

is relatively dense.
Suppose further that V' is an open set in R", and that the function f: RX VX U— R", which is
differentiable with respect to x, satisfies the following conditions: (1) fEC(RXV X U,R"),
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738 A. G. IvaNov

[rEC[RxVxU,Hom(R")], and (2) fEB(RXKxU,R"),fr€B[RXxKxU,Hom(R")] for
every compact KCV. We shall also assume that the function fy: RX VX U—R also satisfies
conditions 1 and 2 (with the corresponding change in dimensions).

Suppose that ACR, then D;(A) is the set of functions u(-)ES(R,U) such that
Mod(x) CMod(A), and if y€ C(R, R") = C(R"), then orb(¢) is the closure (in R™) of the set
orb(y) = {¢ (1), tER}.

Definition 1. The problem

JoGe( ) u(- ) = M{fo(t,x(0), u())} ~inf (1.1)
where x(-) is a Bor a.p. solution of the system
x =f(t,x,u®), u(-)ED(A) (1.2)

and orb(x) CV, is called an a.p. optimal control problem, and D;(A) is the set of admissible
(ordinary) controls (as regards the well-posedness of the problem see Sec. 2, Corollary 2.1).

We will give some necessary extremality conditions for the optimal control of a convexified
(relative to the original) a.p. optimal control problem. On the importance of the enlargement
(convexification) procedure applied to optimal control problems see, for example, [11-13], and in
the theory of games [14, 15]. With this aim, in the following section we shall introduce the space of
APM measure-valued a.p. mappings, while to conclude this section we recall the concept of
exponential dichotomy.

Suppose FE€ L°[R, Hom (R")] is also integrally bounded, i.e.

t+1

sup [ IF(s)lds <o
tER ¢t
The system

x =F(t)x, x€R" (1.3)

is exponentially dichotomous [16, 17] if there exist mutually complementary projections P,
P, Hom(R") and constants vy, , vy, oy, 0 >0 such that

t< oo
s< o0

|@@) P1@ 7' ()] < 1iexp(—0,(t — 5)), —=<s
| B () P,® ' (5)] < yaexp(—02(s — 1)), —oo<t

AN

(1.4)

where @(-) is the fundamental matrix of system (1.3). In this case the function
(t,s)—G(t,s)EHom(R"), t, s€ R defined by the equalities

G(t,8) = X(— oo, ) ) PV P17 (5) — X (1, )(8) () P2D7' (5)

where xo(-) is the characteristic function of the set Q CR, is called the (main) Greens function of
system (1.3).

If FES[R, Hom(R")] and system (1.3) is exponentially dichotomous, then [17, 18] for any
function b€ S(R, R") the system x" = F(¢+)x+ b(¢) has a unique solution x(-) bounded on the
entire numerical axis, computed from the formula

x(t)=1{G(t, 5)b(s)ds, t€ER
and x(-) EB(R, R").

2. Suppose frm (U) is the linear space of Radon measures on R” whose basis is contained in U,
and rpm (U) is the subset of frm (U) consisting of probabilistic Radon measures. We will denote by
N=NI|R, frm(u)] the collection of (Lebesgue) measurable mappings u: R—frm(U) such that
| e]| = ess sup,er | (£) | (U) < =. [Here |p(¢)| (U) is the variation of the measure u(¢) € frm (U) and
Ny =N(R, rpm(U)).] Suppose further that |[B=|B(RxU, R") [|B;=|B(RXU,R)] is the
collection of functions ¢: RxXU--R” such that the map t—¢(t,u), u€U is measurable,
¢(t,-)EC(U,R") for almost all tER and there exists a function ¢, (-)EL,(r, R) such that for
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almost all 1€ R the inequality max,cy|¢(t, u)| <, (¢). It is easy to show that |B is a linear space
and

holig= [ maxlo@ u)ldt
R ueU

is the norm of ¢ € |B. Furthermore, with minor changes to the proof of the Danford-Pettis theorem
[11, p. 299] one can show that N=|B} and the map || |w: N— R defined for u € N by the equality

= -
Buly, 2 T~ | [ (ult), 0,
# i=t 1+ lgllg ‘,{ u(@), ¢ (1, u)) dt

(}l(’), \oj(tiu))é({; *P;(t»“)u(t)(du)

where {¢1, ¢2, . . .} is the denumerable and everywhere dense set of functions in B and is a (weak)
norm in N. The space (N, ||-|lw) is separable, the set NyC (N, ||-]w) is a convex compact set and if
pi, kENy,j=1,2,. .., thenlim; .| p;— plw = 0if and only if

lim z{ () — ;) p(t,u)dt=0

oo
for any function ¢ € |B.

Definition 2.1. [19, p. 5]. The map w €N is called a.p. if for any function g€ C(U,R") the map
t—>{u(r), g(u)) belongs to S(R, R™).

The collection of all a.p. maps p €N (1, € Ny) is denoted by APM (APM,). We denote by
APM{ the collection of those u&€ APM; such that u(f) = 8, for almost all fER and some
measurable function u(-): U—R, where 8, is the Dirac measure concentrated at the point
u(t)€U. One can show that APM{V=S(R, U) and, consequently, each u(-)E€S(R, U) can be
considered as an element of the space APM,, identifying it with d,,.

If n € APM, then by definition the map r—{u(¢), g(1)) belongs to S(R, R™) for every function
g€ C(U,R™). Hence for every AER there exist means A,[g,A]=M{{u(t), g(u))cosit},
B,[g. | =M{(u(), g(u))sinAt) with

(u(®), g ~A,lg, 0] + 2}\2 oAp[g: Al cosht + By [g, N]sinAz (2.1)

As has already been noted, the set A(u, g)={AER: |A,[g,A]|+|B.[g, A]|>0} of Fourier
indices for a.p. maps t—{u(t), g(u)) is not greater than denumerable, and in (2.1) it is to be
understood that A, [g, A] = B, [g, A] = 0if A€ A(u, g). In [19] it was shown that for every A € R one
can find measures o, , B, Efrm(U) such that A, [g, A] = (e, g(u)), B.[g, A]={(Bx, g(u)) for all
gEC(U, R"™). Suppose now that {g,, g2, ...} is a denumerable set that is everywhere dense in
C(U, R™) and consists of continuous functions and A(s) = {AER: |, |(U) + |8, [(U)>0}. It turns
out [19, p. 7] that A(u) = UZ,A(g, g;) (hence A(n) is no larger than a denumerable set). A(u) is
called the set of Fourier indices of the map u € APM, and the sign-valued series

g +2 £ a)cosAt+fsinAt —
A% 0

is its Fourier series. Here Mod (1) = Mod[A(u)] is the modulus of the map p € APM.

Theorem 2.1.1 If € B(Rx U, R), then for any u € APM the map r— (u(t), ¢(z, u)) belongs to
S(R, R) and its modulus is contained in Mod[A(u) U A(e)].

+IVANOV A. G., Sign-valued almost-periodic functions. Unpublished paper, Izhevsk, 1991. Deposited in VINITI
24.04.91, No. 1721-V91.



740 A. G. Ivanov

Corollary 2.1. If the function g: R XV x U— R" satisfies conditions (1) and (2), and u &€ APM,
then for every x€V the map 1—{(u(t), g(t, x, u)) belongs to S(R, R") and, if the function
x(-)E€B(R, V) is such that orb(x) C V, then the maps r—{u(t), g(t, x(¢), u)), t—>(u(t), g (t, x(t),
u)) belong to the spaces S(R, R™) and S[R, Hom(R")] respectively.

Suppose further that

Dy(8)={ u € APM, : Mod()C Mod(A)} (2.2)

Definition 2.2. The problem

JEChu CN =M Eu@), folt,x(®), u)t > inf (2.3)
where x(-) is Bor a.p. solution of the a.p. system
x ={u@), f(t,x, u))ét{ f,x,u) p(®)@u), u(-)EDy(A) (2.4)

where orb(x) CV, is called a convexified problem of optimal control of a.p. motions in which any
such pair [x(-), u(-)] is called an admissible controlled process, and D,(A) is the set of admissible
controls; H(t, x, v, p)=—p(v, f(t, x, u))+(v, fo(t, x, u)), pER™, and vErpm(U) is the
Pontryagin function for problem (2.3), (2.4).

Theorem 2.2. Suppose that [x°(+), u°(-)] is a solution of problem (2.3), (2.4), and that the a.p.
system of equations
y =W, X (1), u)y, yER" (2.5)

is exponentially dichotomous. Then for a p(:) &€ B(R, R"*) which is a solution of the system of
equations

p = —pLu’@), fr(t,x°(@), u)) +{u°(t), fo.(t,x°(t), u)), pER™* (2.6)
the Pontryagin maximum principle

sup  MAH(,x°(2), v(@®), p (N} =M{H(t,x°(1), £°(t), p (D)} (2.7)
vED,(A)

is satisfied.
One can prove the following theorem (see Theorem 4.2 and Remark 1.1 in [20]).

Theorem 2.3. Equality (2.7) is satisfied if and only if for almost all € R

max  H(t,x°(2), v, p (1)) = H(t,x°(0), u° (1), p (1))
vErpm(U)
To prove Theorem 2.2 we need the concept of a needle-shaped variation of u°€ D, (A), and also
the theorem given below. But first we recall [19] that the set Q C APM is called equally a.p. if for
any function g€ C(U, R") the set {{(u(-), g(u)), u(-)EQ} CS(R, R") is equally a.p.

Theorem 2.4.t Suppose B is a limit of an open set A of the linear normed space (L, ||-||.) and we
are given a map a—u(-,a) from A into APM;. Suppose further that the function f:
R XV x U— R" satisfies conditions 1 and 2, that the pair [x (-, 8), u(-, B)] [where u(-, B) E APM,)
is such that x (-, B) is a Bor a.p. solution of system (2.4) with u(¢) = u(t, 8) and orb[x (-, B)]CV
and, furthermore, that the a.p. system

y ={u@,B), fi(t,x(, B u)y, yER"
is exponentially dichotomous. Then, if the set {u(-,a), a €A} is equally a.p. and |u(-,

tIVANOV A. G., Continuous dependence of an almost-periodic solution of a system of differential equations on a
functional parameter—I. Unpublished paper. Deposited in VINITI 30.08.91, No. 3610-V91.
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a)—-u(, B)llw—0 as |Ja—B|.—0, then one can find a y>0 such that for all @€ A for which
|la—Bll.<7y the system x* = (u(t,a), f(t, x, u)) has a Bor a.p. solution x(-,a) such that
orb[x(-, a)] CV and, moreover, ||[x (-, a) —x(-, B)llccrmy— 0 as [la— B||.— 0.

3. Choose an a>0 such that 2/a € Mod (A) and suppose that 3€[0,a), a€ A =(0, a—3) and
vE D, (A) [see (2.2)]. Throughout the following [x°(-), #°(-)] is a solution of problem (2.3), (2.4).

Definition 3.1. The map t— u(t, @), a € A, defined by

pt@), t€ U |ma,(m+1)a\Tp, 4, 9
mezZ

p(, @)= (3.1

v(), t€ U T, 492 U [mat+td,matd+a)
meZz meZ

is called a needle-like variation of u°(-) € D, (A).
The following theorem follows directly from the definition.

Theorem 3.1. The family of maps {u(-, a), a €A} defined by formulae (3.1) belongs to D,(A),
and is equally a.p. and ||u(-, @) — u°(+)|,—0 for a | 0.

Corollary 3.1. If system (2.5) is exponentially dichotomous, then for all sufficiently small a €A
system (2.4) has for u(t) = u(t, a) a Bor a.p. solution x (-, &) such that orb[x (-, @)] CV and

lim x°C-) — x(-, 0l 0 3.2)
al0

C(R™) -

Throughout the following, assuming F(¢) = (u°(¢), fx(t, x°(¢ ), u)) for system (2.5), we will retain
the notation used in the definition of exponential dichotomy of system (1.3). Furthermore, the set
K €comp(R") is such that orb(x°) CKC V. By Corollary 3.1 we can find an interval A;CA such
that for all a €A, orb[Ax (-, )] CK, where Ax (-, a=x°(-)—x(-, a).

Lemma 3.1. There exists an interval Ao C A such that the set {a " 'Ax(-, @), a€ A4} CB(R,R") is
uniformly bounded.

Proof. In the paper cited in the first footnote it is shown that one can find an interval A, C A such that for all
a € A, the function Ax (-, a) € B(R, K) satisfies the equation

z=f Gt $)[hy(s, 2)+ £(s, 2)] ds (3.3)
R

ho(t 2) = Ap°(8) = n(t, o) f(2, x°(8) ~ 2, u)>
&(t, z) =’ (), £, x°(), u) — f{t, x°(t) — z, 1)) — (), f (£, x° (1), u)) z
Because f, € B[R x Kx U, Hom(R")], then (see [10]) one can find an ay>>0 such that

3 -1
Uit x o u) = frt, gl < (l + I (3.4)
4\ o, o,

forall (r, x;, u) ERX KX U, j=1,2,if |x; —x,| <ay. Because for a € 4, [see (3.3)]

ax(t, ) _
«

1
— [ G, ) hy(s, Ax(s, a)) ds +
a R

1

A R
+ LG, )W) [ (fiels, x°(s) — 0 AX(s, @), u) — fi(s, x°(s), ) d6) xG.@
R o :

ds (3.5)
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then from (3.1), the definitions of the functions 4, (¢, 2} and (3.4) for all a€ Ag=(0, a)}N A, we obtain the
proof of

axto.a)
0(2;)4 i o < r‘n( i + Iz ) (36)
A, CR™) I — expl-o0,a) 1~ exp(~o0,a)
Iy 2 sup fIf e, L L x, wy R XK X U 3.7
Lemma 3.2. The following limit equality holds as lim, | 4, €4,
. AX( , ) 1

lim || ———— —~ — f G(-, )’ (s) — uls, &), f(s,x°(s), u))ds” = (3.8)

al0 a C(rR" )

The proof of Lemma 3.2 follows directly from the inclusions fEB(RXKxU, R"),
frEB[R X Kx U, Hom(R")], equality (3.5) and inequality (3.6), and so we omit it.
Throughout the following (see 1.4)

Z.=10,1,...}
X (6,20 +1)0 7 (s+1), P(t,9)zd@Pd7'(),_j=1,2
A, )= (@) — p°@O, F@X°@), u)), 1) =), Fox (€, x°(D), u) (3.9)

Fl :‘:Sup l'f;)x(tixau)t:(t»xsu)ER X KX UE ] FélnaX(FO) r‘l)

We note that n(-)ES(R, R) and because |u°]| =1, =T, =ess sup,cr|n(t)|. Furthermore,
suppose that for s €[0, a]

(m+1)a
D ()= [ m@Pt+s—ka—a)Af(t+s - ka—a,v)dt (3.10)
(m+ya (3.1
£2) (92 [ n@OP(t+s+ka) Af(r+s+ka, v)dt

nia

Lemma 3.3. For every k€ Z the sets {¢¥) ,,mE Z,},j= 1,2 are contained in C([0, a], R") and
are equicontinuous.

Proof. Suppose w(h) (#>0) is equal to
sup {1 X,(0, 5,) = X, (0, 5,)1, s ER X [ka, (k+ Dal, j=1,2, 1s, = 5,1 i}

Because Af(-, »)ES(R, R"), then [9, p. 201}

rta

lim ( sp 1 S raru+h v~ afe,mdi=0 (3.12)
hHi0 rER 2

Now, using the fact that w(k)->0 as # | 0 and the easily obtained inequality [here see (3.7) and (3.9)]

1 rta
! t(z} (s+h)— 5(2) ()< ay, D sup — [ 1Af@+h vy~ af@0ldr+ 2y,a7 % wih)
m,k mKk yeR 4
we find that the set {&2, meZ,}CC([0, a], R™) is also equicontinuous. We can similarly prove the
corresponding assertion for the set {£}, me Z,}.
Suppose further that Z§'), , () and E§2),, . (9) are respectively equal to

(m+1)a 1 .
f n(t)[- [ Pi(t,t+syAf(r+s,v)ds —
o Ty

ma

— Py(t,t —ka—a+NAf(t—ka—a+t?, v)]dt

{(m+1)a

f n@®| —1~ Tf Py(t,t+s)Af(t+s,v)ds— Pyt t tka+ 8) Af(e+ka+9,v)]dt
@ T

ma
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where [see (3.1)]
Te=T_k+1)0,00 Tk =Tk,a,0 (3.13)

Lemma 3.4. For every k€ Z, and 9€[0, a]

lim ( up VED L D=0, f=1,2 (3.14)
ald meZ
aEA

Proof. Changing the order of integration in each =¢), (), and using (3.10) and (3.11), we obtain the
inequality
d+a

. 1 R .
=0 < = [ gho-elonds j=12

k,m,a

Then (3.14) follows from Lemma 3.3.
Throughout the following

L, 6)&")_30 Pt t—ka—a+t9)Af(t—ka—a+9,b)—
— Py(t,t+ka+ ) Af(t + ka + 9, v))

Using the “‘a.p. along the diagonal” property (see the paper mentioned in the second footnote)
the maps (¢, s)— P;(t,s), j = 1, 2 and the inclusion Af(-, v) €ES(R, R") one can show that the family
of maps {L(-, ¥), 9€][0, a]} belongs to S(R,R") and is uniformly bounded and equally a.p.
Furthermore, we have the following theorem.

Theorem 3.2. For almost all €0, a], a€ Ao

(mt1)a .
h n(z)( BLIGL 0))4: D= 0 (3.15)
a

ma

lim ( sup
al0\mezZ,

Proof. Suppose y=max(y,, ¥2), o=max (o, o). Because

Ee®= T ( sup |~<” @)+ sup |~<2>
= me

k=0 me2z k,m,x k,m,a

)< 8yal'? T ¢ oka
k=0

then for a given >0 one can find a ky=1 such that for all (o, 3) EA( X [0, a)
e &
E,N<—~+Z (sup 12 )+ sup 123 D (3.16)
2 k=0 mez, mez,

k,‘m,a k,m,a

Then, because for ¢ € A,

sup | f

mezZy ma

(m+1)a Ax(t, )
n(r)( - —L(t,t?))dtl<5a(l9)+

AX(',Q) ° o
+aFH — [ GG 9w~ uis @), £, x (s)’"”dsu

@
(3.15) follows from (3.16) and (3.14), (3.18).

We put Afy (2, v) = (u(t) — u°(t), fo(t, x°(t), u)). By Corollary 2.1 Af(-, v)ES(R, R). Hence (see
the paper mentioned in the first footnote) for almost all 3 € [0, a] there exists

C(R")

1
lim — ZAfo(d+ma,v)=E()
q — oo qa

and the map 9~ &() is measurable and bounded. Above and below the sums are taken from m = 0
tom=gq-—1.
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Lemma 3.5. We have the equality
a 1 1] 9+
lim f{ lim - E(— J Afe(t+ma,v)ydt — Afo(8+ma,v))dd=0
at 00 g—= ga b

Proof. Because the function Afy(-, v) ES(R, R), it obeys a limiting equality similar to (3.12). Hence

1 1 d+a
m ME( [ Af,¢t+ ma, vydt— Af (9+ ma, v))ido <
2

a o
< lim —— Zf(i J1af, ¢+ 9+ma,v)— Af (8 +ma,v)|d)d¥ <
0 [+3

1
< sp (mp — [ IASG+HLY) = Af(s,)ids—0
0<t<a reR 4

when a | 0, as was required.

Corollary 3.1. One can find a sequence {a;}Z; such that o; | 0 as j— and for almost all
F €10, a], for example for € £, we have the equality

1 194”&}
lim ( lim -—— E(— I Afe(t + ma,v)dt — Afo(9 +ma, v)))=0 (3.17)
jrow g—>oe qa a;. K

4. We will give a proof of Theorem 2.2. Take any 9€ EN [0, a) (see Corollary 3.1). By the definition of Ay,
for all a € Aq the pair [x(-, @), u(-, )] is an admissible controlled process of problem (2.3), (2.4). Because
Ix°(+), 1°(+)] is a solution of this problem, then, putting w = o+ & and using (3.1) and (3.13), we have

0<a*{Jx(,ahul-, ad—J&°CLa’(- D=

(m+1)a

= i— lim Ea_ z f Cudt, @), folt, x(t, o), u)) — W) fo(t, x° (@), w)d) dt =
1 ma+
= lm — L= [ @O, folt, x(t, @) u)— £, x°(0), u dr +
g 44 [

+.&1- I @@, folt, x(t, @), u)y — W (@), fo (1, x°(), u)) dt +
Tm

{m+1)a
+ = WO ot x(, ) u) = ot X, up dt] =
Y ma+ w
(mtl)a 1
= lim — Z1 J wt® [ Foxlt. X+ 6ax(, 0. w)d® axtt @)
g 48 ma [+

1
+ h J @, ft x(, 0, 4y~ fy(0.x°(, w)yde + — [ Af,(t,v)dt+
L T;n a 7+

m
(mr+1)a 1
+ Wt f fix (O 6ax( o), u) dod Axtta) dr}
ma+w 0

We now put « = «;, where {a;};Z, is the sequence from Corollary 3.1, by virtue of which, starting from some
Jo, all ;€ A, . Passing to the limit as j— 0 limit in the relation obtained above, using equalities (3.17), (3.15)
and (3.12), the restrictions on fy, the inclusions u°, v€ D, (A) and inequality (3.6), and find that

; a=t (m+1)a
0< lim — 2 @Af,(d3+ma v+ [ a@Lt 9Hdn)
g—eo 44 m=0 ma

Integrating the latter inequality over ¢ from 0 to a [see the definitions of n(¢) and L (¢, )], we obtain
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M{w@) = w°@), folt, x°(), un} + M [ (@), fox (6. x°@), up y ()} >0 (4.1)
y(t)=1{G(t, 9) AF(S, v)d9

Because p(-) and y(-) are Bor a.p. solutions of system (2.6) and y" = (u°(¢), fi[t, x°(t), ul)y +Af(z, v)
(y ER"), respectively, we have

d
g7 POYED=p® ALG )+ W@, fox(t, x°(0), u) y () (4.2)

Since [[pleqarys Iy llcqany <, we have M{d/di[p(t)y(1)]} = 0. Consequently [see (4.2)] M{(u*(t), fiult,
x°(t), uly ()} = —M{p(t)Af(t, v)}. Hence [see (4.1) and the definition of the Pontryagin function] for all
vE D, (A), M{H[t, x°(¢), p°(t), p(t)]} = M {H][t, x°(t), »(t), p(¢)]}, which is equivalent to (2.7). Theorem 2.2 is
proved.

Remark 4.1. One can show that the exponential dichotomy condition on system (2.5) in Theorem 2.2 is
important.
In conclusion we will prove the following theorem.

Theorem 4.1. Suppose [x°(-), u°(-)] is a solution of problem (2.3), (2.4) and p°(- ) € D, (A\D, (A)
(recall that S(R, U)=APM{"). Then one can find [19] a sequence {u;};2,CD;(A) such that
[l1£°(+) = 8., lw—> 0 as j— o and for any function ¢ € B(RX U, R")

lim M {o(t,u; (O} =M Ku°@), o(t, u)} (4.3)

j>oo

Furthermore, it turns out (see the paper mentioned in the second footnote) that for all sufficiently
large j the system

X' =F(8%,up (1) = Guy (0, (1, %, 0))

will have a Bor a.p. solution x;(-) such that orb[x;(-)] CV and

jl_l’rr; IIx(-)—x,-(-)IIC(Rn)-'-'O (4.4)

Then from (4.3), (4.4) and the restrictions on the function f, we obtain lim;,.Jo[x;(-),
w;(-)] = J[x°(-), p°(-)], as was required.
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